Becht Engineering Blog

In this section of the site contributing authors submit interesting articles relating to the various services, industries and research & development efforts of Becht Engineering.
Becht Engineering performs considerable consulting engagements in the Pressure Vessel design and trouble shooting.

Basics of Design By Analysis in ASME Section VIII, Division 2

fea-pressure-vessel-nozzl_20181115-174743_1
How hard can it be?  I’ve heard from several (unnamed) analysts that because they have access to an FEA program and have successfully applied FEA in other fields, that FEA for pressure vessels should be a snap.  What is it about FEA for pressure vessels that makes it unique? I was recently discussing with another blogger regarding some distinctive aspects of performing Design By Analysis for pressure vessels.  We generated several questions, and so I decided to post this in a Question & Answer format. When do I have to use FEA in my pressure vessel design? The short answer here is that for most situations, you probably should not be using FEA to design your pressure vessel.  The rules for designing pressure vessels in ASME Section VIII, Division 1 and ASME Section VIII, Division 2 have a long history of successful application.  So, wherever possible, I would recommend that...
Continue reading
3
  542 Hits
  0 Comments
542 Hits
0 Comments

Five Keys to a Cost-Effective Repair/Modification Package for Tanks-Vessels-Piping

becht_nuclear_5_keys
: Process : Does the repair change the process chemistries, physics (fluid phase), and thermo-hydraulics (flow rates, pressures, temperatures)? Does the modification change the control room indications and the operating envelopes? Material : Are the selected metallic materials (base metal and welds) and non-metallic materials (gaskets, packings, etc.) compatible with the existing materials, with the environment, and with the service, for the design life of the repair? Is the material compliant with (a) the material specification (ASTM or ASME II), (b) the supplementary Code requirements, and (c) the supplementary plant-specific requirements? Will the material be procured from an approved supplier; does it require supplementary Quality Controls? ASME Code design : Does the modification alter the system layout? If yes, has the layout been checked for good practice and consistency with the process design (item 1 above)? Are the loads and load combinations well defined and categorized as Service Levels A,...
Continue reading
6
  1275 Hits
  0 Comments
1275 Hits
0 Comments

Repair of Pressure Equipment and Piping in Nuclear Power Plants- Navigating ASME XI Repairs with PCC-2 as a Roadmap

Repair of Pressure Equipment and Piping in Nuclear Power Plants-
Navigating ASME XI Repairs with PCC-2 as a Roadmap
Download/View as PDF Summary - This article assists engineers in selecting ASME XI options for the repair of ASME III nuclear components. In summary, the repair options in ASME XI are dispersed throughout Section XI and Code Cases, while, in contrast, the ASME PCC-2 repair standard (for non-safety related components) lists repair options in a well-structured manner. So, we are going to use the structure of ASME PCC-2 as a road map to cross-correlate the equivalent ASME XI repair, where it exists. Therefore, the Table can be used as a checklist to remind engineers of the many repair options. On one hand …. ASME XI : The repair of safety-related Class 1, 2, and 3 nuclear components is addressed in ASME Boiler & Pressure Vessel Code Section XI and in a series of ASME XI Code Cases. The use of ASME XI and its Code Cases to select a repair...
Continue reading
2
  4054 Hits
  1 Comment
4054 Hits
1 Comment

Design/Specification of FCC Replacement Parts and Upgrades

Design/Specification of FCC Replacement Parts and Upgrades
Overview Fluid Catalytic Cracking (FCC) units were first developed in the 1930s. Over the years this technology has evolved and it is one of the most important processes used in refineries. The FCC units are used to convert high boiling point, high molecular weight hydrocarbon fractions of crude oils to gasoline, olefinic gases, and other products. There are a number of process technology providers who license proprietary FCC technology; however, the equipment is basically the same ─ a reactor vessel where the hydrocarbon feed and hot catalyst contact and react (~950F) producing hydrocarbon vapors for further processing, and a regenerator vessel where the carbon laid down on the surface of catalyst from the reaction is burned off (regenerated and heated) in a fluidized bed (~1350F). The regenerated catalyst is returned to the reactor. The catalyst circulation between the reactor and regenerator is continuous. Large diameter refractory lined piping (transfer lines) circulate...
Continue reading
6
  3982 Hits
  0 Comments
3982 Hits
0 Comments